Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

[η^{6}-1-Chloro-2-(pyrrolidin-1-yl)benzene] ($\boldsymbol{\eta}^{5}$-cyclopentadienyl)iron(II) hexafluoridophosphate and ($\boldsymbol{\eta}^{5}$-cyclopentadienyl) $\left\{2-\left[\boldsymbol{\eta}^{6}-2-(\right.\right.$ pyrrolidin-1-yl)phenyl]phenol\}iron(II) hexafluoridophosphate

Arthur D. Hendsbee, Jason D. Masuda and Adam Piórko*

Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
Correspondence e-mail: adam.piorko@smu.ca

Received 2 September 2011
Accepted 18 November 2011
Online 30 November 2011
In the complex salt [$\eta^{6}-1$-chloro-2-(pyrrolidin-1-yl)benzene]((%5Ceta%5E%7B5%7D)-cyclopentadienyl)iron(II) hexafluoridophosphate, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClN}\right)\right] \mathrm{PF}_{6}$, (I), the complexed cyclopentadienyl and benzene rings are almost parallel, with a dihedral angle between their planes of $2.3(3)^{\circ}$. In a related complex salt, (η^{5}-cyclopentadienyl) $\left\{2-\left[\eta^{6}-2-(\right.\right.$ pyrrolidin-1-yl)phenyl $]$ phenol $\}$ iron(II) hexafluoridophosphate, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}\right)\right] \mathrm{PF}_{6}$, (II), the analogous angle is 5.4 (1) ${ }^{\circ}$. In both complexes, the aromatic C atom bound to the pyrrolidine N atom is located out of the plane defined by the remaining five ring C atoms. The dihedral angles between the plane of these five ring atoms and a plane defined by the N -bound aromatic C atom and two neighboring C atoms are 9.7 (8) and 5.6 (2) $)^{\circ}$ for (I) and (II), respectively.

Comment

(η^{6}-o-Chloro- N-pyrrolidinylbenzene) $\left(\eta^{5}\right.$-cyclopentadienyl)iron(II) hexafluoridophosphate, along with similar m - and p -chloro- N-butylamino- and di- N -butylamino-, chloro- N -pyr-rolidinyl- and di- N-pyrrolidinyl-, and some chlorocyanobenzene complexes with a cyclopentadienyliron(II) unit, were reported as part of a study of nucleophilic aromatic mono- and disubstitution reactions using $o-, m$ - and p-dichlorobenzeneFeCp (Cp is cyclopentadienyl) complexes (Lee et al., 1989) with amines and the cyanide anion. (η^{5}-Cyclopentadienyl) $\left(\eta^{6}\right.$ o - N-pyrrolidinyl- o^{\prime}-hydroxybiphenyl)iron(II) hexafluoridophosphate was obtained in another nucleophilic substitution reaction, viz. a ring-opening reaction of a furan ring in dibenzofuran facilitated by η^{6}-complexation with an FeCp moiety (Lee et al., 1983). Having previously observed a distortion of the FeCp-complexed benzene ring, which resulted from the o-dipyrrolidinyl substitution of benzene
(Jenkins et al., 2009), we resolved to take a closer look at FeCp complexes of related o-disubstituted benzenes in which one of the substituents is a pyrrolidinyl group, and the second may exert either steric hindrance or a significant electronic influence.

(I)

(II)

In the title complex salts, $\left[\eta^{6}-1\right.$-chloro-2-(pyrrolidin-1-yl)benzene] (η^{5}-cyclopentadienyl)iron(II) hexafluoridophosphate, (I), and (η^{5}-cyclopentadienyl) $\left\{2-\left[\eta^{6}-2\right.\right.$-(pyrrolidin-1-yl)phenyl $]$ phenolliron(II) hexafluoridophosphate, (II), the Fe ion is located at distances of 1.644 (4) and 1.663 (1) \AA from the Cp plane, and at distances of 1.554 (4) and 1.557 (1) \AA from the benzene ring plane, respectively. These values are close to those reported in the literature for similar complexes (see, for example, Piórko et al., 1995; Fuentealba et al., 2007; Manzur et al., 2007, 2009; Hendsbee et al., 2010, and references therein).

In complex (I), the benzene and Cp rings are nearly parallel, with a dihedral angle of $2.3(3)^{\circ}$, while in complex (II), this angle is larger, reaching $5.4(1)^{\circ}$. This second value is among the largest reported from our work, along with the

Figure 1
View of complex (I), showing the labeling of the non-H atoms and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.

Figure 2

View of complex (II), showing the labeling of the non-H atoms and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.
value of $5.34(13)^{\circ}$ given previously by Jenkins et al. (2009). This is also similar to the value of 5.4° reported for the hexaethylbenzene- CpFe complex (Dubois et al., 1989), although lower than the value of 7° reported for the $1,1^{\prime}-$ trimethylenebenzene-CpFe cation (Nesmeyanov et al., 1977). No standard uncertainties were provided by these authors in their reports.

For (I), the average $\mathrm{Fe}-\mathrm{C}$ (benzene) distance is 2.098 (10) \AA, while the distances to the substituted atoms C1 and C2 are 2.085 (10) and 2.237 (8) Å, respectively. For (II), the corresponding values are 2.107 (4) \AA for the average, and 2.139 (3) and 2.218 (3) \AA for the $\mathrm{Fe} 1-\mathrm{C} 1$ and $\mathrm{Fe} 1-\mathrm{C} 2$ distances, respectively. The distances from atom Fe 1 to atom C2, which carries a pyrrolidin-1-yl substituent in both complexes, are among the largest reported for similar complexes, along with the value of 2.252 (2) \AA reported previously for one of the substituted ring C atoms of a dipyrrolidinyl complex (Jenkins et al., 2009). Other reports with similar $\mathrm{Fe}-\mathrm{C}_{\text {subst }}$ distances include the structure of an $\mathrm{Fe}\left(\mathrm{Me}_{5} \mathrm{Cp}\right)$ phenoxide-water complex $\left[\mathrm{C}_{\text {subst }}\right.$ bonded to O ; 2.269 (9) Å; Moulines et al., 1995; Djakovitch et al., 1996], a p methylphenylhydrazine FeCp fragment in a tungsten complex [2.24 (1) \AA; Ishii et al., 1994] and an N^{\prime}-isopropylidene hydrazone of p-methylphenylhydrazine [2.201 (5) Å; Manzur et al., 2000]. Many of the Cp and pentamethyl-Cp complexes examined in a series of studies by Carrillo and coworkers (see, for example, Fuentealba et al., 2007; Manzur et al., 2000, 2007, 2009) have an $\mathrm{Fe}-\mathrm{C}_{\text {subst }}$ (bonded to N) distance shorter than that found in our work.

The distance of the pyrrolidine N atom from the C1-C6 ring plane is 0.099 (13) and 0.034 (4) \AA, respectively, in (I) and (II).

The N atom in each complex is located on the opposite side of the plane defined by the complexed benzene ring with respect to the Fe atom attached to this ring. These values and the long $\mathrm{Fe} 1-\mathrm{C} 2$ distances prompted examination of additional selected angles and planes to discern possible deformations of a complexed aromatic ring. Examination of the $\mathrm{Fe}-\mathrm{C}_{\text {subst }}-X$ angles (where X is the atom of a substituent bonded to the complexed benzene ring and $\mathrm{C}_{\text {subst }}$ is the atom in the complex ring to which substituent X is attached) revealed that for the two different substituents present in the studied complexes, the angles have quite different values. It was expected that a longer $\mathrm{Fe}-\mathrm{N}$ (bonded to aromatic C) distance may be reflected in a smaller $\mathrm{Fe} 1-\mathrm{C} 2-\mathrm{N} 1$ angle. For (II), the values are 135.4 (2) ${ }^{\circ}$ for $\mathrm{Fe} 1-\mathrm{C} 1-\mathrm{C} 7$ and 133.8 (2) ${ }^{\circ}$ for $\mathrm{Fe} 1-\mathrm{C} 2-$ N 1 , which is in agreement with the expected order. For (I), however, these values are $133.1(5)^{\circ}$ for $\mathrm{Fe} 1-\mathrm{C} 1-\mathrm{Cl} 1$ and $135.2(6)^{\circ}$ for $\mathrm{Fe} 1-\mathrm{C} 2-\mathrm{N} 1$, thus the expectations were not substantiated in the case of this complex. As the N atoms are found above the complexed benzene-ring plane, on the side opposite to Fe , in both complexes, the dihedral angles between the planes formed by each substituted C atom and its direct neighbors in a ring versus planes of other ring C atoms were also examined. For (I), a plane centered at C 1 and defined by atoms $\mathrm{C} 2 / \mathrm{C} 1 / \mathrm{C} 6$ intersects the $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6$ plane at a dihedral angle of $6.4(5)^{\circ}$ and intersects the plane formed by the unsubstituted ring C atoms $\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6$ at a dihedral angle of $5.1(6)^{\circ}$, the angles being essentially the same. The C1/ $\mathrm{C} 2 / \mathrm{C} 3$ plane, centered upon C 2 , which is an N -bound C atom, intersects the $\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 1$ plane at an angle of $9.7(8)^{\circ}$ and intersects the plane defined by unsubstituted ring C atoms C3/C4/C5/C6 at an angle of 10.2 (9) ${ }^{\circ}$. For (II), the values between planes are as follows: 2.8 (2) ${ }^{\circ}$ between $\mathrm{C} 2 / \mathrm{C} 1 / \mathrm{C} 6$ and $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6,2.5(2)^{\circ}$ between $\mathrm{C} 2 / \mathrm{C} 1 / \mathrm{C} 6$ and $\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 /$ C6, $5.6(2)^{\circ}$ between $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3$ and $\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 1$, and 6.2 (2) ${ }^{\circ}$ between $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3$ and C3/C4/C5/C6. These angles seem to suggest that a longer $\mathrm{Fe} 1-\mathrm{C} 2$ distance and a larger dihedral angle between the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3$ planes and a plane defined by the ring C atoms excluding atom C 2 observed for (I) may be a result of the electronic influence of the chlorine neighbor and, for (II), steric crowding exerted by the second, directly linked, benzene ring. Similar values, viz. 6.0 (5) and 7.1 (6) ${ }^{\circ}$, have been reported for phenylhydrazine complexes studied by Manzur et al. (2000). The pyrrolidine ring of (I) in the solid state adopts a twisted conformation with C12 and C13 located out of the plane defined by the remaining three atoms. In comparison with C 12 , atom C 13 is further away from the o-chloro substituent and from the Fe atom. A similar situation is observed for (II), with C22 and C23 located out of the C21/N1/C24 plane. In comparison with C22, atom C23 is further away from the uncomplexed ring of the biphenyl skeleton and from the Fe atom. Bond lengths in the pyrrolidine rings of both complexes are similar and in line with literature values (Allen et al., 1987). The N atoms in both complexes show similar bond lengths to ring atom C2 $[1.344$ (11) \AA for (I) and 1.356 (4) \AA for (II)] and to the methylene C atoms of the pyrrolidine rings [range 1.476 (4)1.484 (12) \AA]. The $\mathrm{C} 2-\mathrm{N} 1$ bond length in each complex,
which is in agreement with the $\mathrm{C}_{\mathrm{ar}}-\mathrm{N} s p^{2}$ bond length (Allen et al., 1987), implies that depyramidalization of the N atom takes effect in both complexes. This suggestion is corroborated by the geometry around the N atom; the sum of angles is close to 360° in each complex [358.4 (9) and 357.1 (4) ${ }^{\circ}$, respectively, in (I) and (II), and this may, as discussed by Manzur et al. (2000), result from a partial delocalization of the N1 lone pair of electrons toward the complexed benzene ring.

The average $\mathrm{C}-\mathrm{C}$ bond length for the complexed benzene ring of (I) is 1.410 (14) \AA. For (II), the average is 1.419 (4) \AA and the bond between substituted atoms C 1 and C 2 [1.441 (4) \AA] is slightly longer than the average. In (I), the $\mathrm{C} 1-\mathrm{Cl} 1$ bond length and the $\mathrm{Fe} 1-\mathrm{C} 1$ distance $[1.728$ (10) and 2.085 (10) \AA, respectively] are similar to values reported for the same bonds in an o-dichlorobenzene-FeCp complex (Crane, 2003). The second benzene ring in (II) shows no unusual features, and the $\mathrm{C} 1-\mathrm{C} 7$ bond between the rings has a length of 1.491 (4) \AA, which is in agreement with literature data (Allen et al., 1987). The plane of this second ring is tilted at $74.9(3)^{\circ}$ with respect to the plane of the complexed ring.

Experimental

Complex (I) was prepared from (o-dichlorobenzene) $\mathrm{FeCp} \cdot \mathrm{PF}_{6}$ and pyrrolidine according to the method of Lee et al. (1989). Complex (II) was prepared by ring opening of dibenzofuran in a reaction of (dibenzofuran) $\mathrm{FeCp} \cdot \mathrm{PF}_{6}$ with pyrrolidine as described by Lee et al. (1983). In each case, the crystals used for data collection were grown by cooling of a solution in a mixture of acetone, diethyl ether and dichloromethane at 280 K for an extended period of time. It should be noted that, despite our numerous crystallization attempts under different conditions, the quality of the crystals of complex (I) was not as good as the quality of those of complex (II), and this affected both our results and their analysis.

Compound (I)

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClN}\right)\right] \mathrm{PF}_{6}$
$M_{r}=447.57$
Monoclinic, $P 2_{1}$
$a=7.000(2) \AA$
$b=13.401(4) \AA$
$c=8.805(3) \AA$
$\beta=95.183(4)^{\circ}$

Data collection

Bruker APEXII CCD

diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.522, T_{\text {max }}=0.746$

Refinement

```
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.081\)
\(w R\left(F^{2}\right)=0.206\)
\(S=1.09\)
2880 reflections
227 parameters
507 restraints
H -atom parameters constrained
```


Compound (II)

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}\right)\right] \mathrm{PF}_{6}$
$M_{r}=505.22$
Monoclinic, $P 2_{1} / n$
$a=10.9764$ (11) \AA
$b=9.4221$ (10) \AA
$c=19.393$ (2) A
$\beta=91.608(1)^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.691, T_{\max }=0.745$

$$
\begin{aligned}
& V=2004.8(4) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.90 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& 0.33 \times 0.30 \times 0.28 \mathrm{~mm}
\end{aligned}
$$

9910 measured reflections
3451 independent reflections 2720 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.040$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.122$
$S=0.85$
3451 reflections

281 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.60 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.36 \mathrm{e}^{-3}$

For (I) and (II), the H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}$ distances of $1.0 \AA$ for all complexed, uncomplexed aromatic and Cp H atoms, $0.99 \AA$ for aliphatic H atoms, and $0.84 \AA$ for the hydroxy H atoms. H atoms were constrained to ride on the parent C atom, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the aromatic, Cp and aliphatic H atoms, and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$ for the hydroxy H atoms. The structure of (I) contains two molecules of a single enantiomer in the unit cell, and the structure itself was refined as an enantiomeric mixture. The major twin domain refined to 0.64 (5). A warning was generated by PLATON (Spek, 2009); ADDSYM indicated $P 2_{1} / m$ pseudosymmetry. The pseudo-inversion symmetry indicated is not present as crystallographic symmetry, as a complete overlap of the two molecules is not formed upon application of the proposed inversion symmetry element (only 88% of the atoms are related by the additional symmetry element). Additionally, an extensive search for the cell of apparently higher symmetry was attempted using CELL_NOW (Bruker, 2008), with a total of 4399 reflections indexed and a minimum $I / \sigma(I)$ value of 1.75 for the spots harvested. The search for a larger cell was unsuccessful and therefore the pseudosymmetry warning was ignored and the refinement was completed in the space group $P 2_{1}$. Three outlying reflections with h, k, l values $(4,0,0),(4, \overline{1}, \overline{1})$ and $(4,0,2)$ were omitted from the refinement. This complex contains a Cp ring which is π-bonded to an Fe atom, and the thermal motion of this Cp ring resulted in unsatisfactory anisotropic displacement parameters for atoms $\mathrm{C} 1-\mathrm{C} 6$ (coordinated aromatic ring) and atoms C21-C25 (complexed Cp ring). This was resolved through the use of restraints applied to the refinement of these atoms: the $U^{i j}$ components of these atoms were restrained to be equal to within $0.001 \AA^{2}$ and their anisotropic displacement parameters were restrained to be equal to within $0.02 \AA^{2}$.

For both compounds, data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank Saint Mary's University for financial support.

metal-organic compounds

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FN3089). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2008). SADABS and CELL_NOW. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Crane, J. D. (2003). Acta Cryst. E59, m1004-m1005.
Djakovitch, L., Moulines, F. \& Astruc, D. (1996). New J. Chem. 20, 1071-1080.
Dubois, R. H., Zaworotko, M. J. \& White, P. S. (1989). J. Organomet. Chem. 362, 155-161.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fuentealba, M., Toupet, L., Manzur, C., Carrillo, D., Ledoux-Rak, I. \& Hamon, J.-R. (2007). J. Organomet. Chem. 692, 1099-1109.

Hendsbee, A. D., Masuda, J. D. \& Piórko, A. (2010). Acta Cryst. E66, m1154. Ishii, Y., Kawaguchi, Y. I., Aoki, T. \& Hidai, M. (1994). Organometallics, 13, 5062-5071.
Jenkins, H. A., Masuda, J. D. \& Piórko, A. (2009). Acta Cryst. E65, m966.
Lee, C. C., Piórko, A., Steele, B. R., Gill, U. S. \& Sutherland, R. G. (1983). J. Organomet. Chem. 256, 303-308.

Lee, C. C., Zhang, C. H., Abd-El-Aziz, A. S., Piórko, A. \& Sutherland, R. G. (1989). J. Organomet. Chem. 364, 217-229.

Manzur, C., Baeza, E., Millan, L., Fuentealba, M., Hamon, P., Hamon, J.-R., Boys, D. \& Carrillo, D. (2000). J. Organomet. Chem. 694, 2043-2046.
Manzur, C., Millan, L., Fuentealba, M., Hamon, J.-R., Toupet, L., Kahlal, S., Saillard, J.-Y. \& Carrillo, D. (2007). Inorg. Chem. 46, 1123-1134.
Manzur, C., Millan, L., Fuentealba, M., Trujillo, A. \& Carrillo, D. (2009), J. Organomet. Chem. 694, 2043-2046.

Moulines, F., Djakovitch, L., Delville-Desbois, M.-H., Robert, F., Gouzerh, P. \& Astruc, D. (1995). J. Chem. Soc. Chem. Commun. pp. 463-464.
Nesmeyanov, A. N., Tolstaya, M. V., Rybinskaya, M. I., Shul'pin, G. B., Bokii, N. G., Batsanov, A. S. \& Struchkov, Yu. T. (1977). J. Organomet. Chem. 142, 89-93.
Piórko, A., Christie, S. \& Zaworotko, M. J. (1995). Acta Cryst. C51, 26-29.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

